

Welcome to pEp Python Remailer’s documentation!

Contents:

	pEp MixMailer prototype in Python
	Documentation

	Issues

	Contributing

	License

	Authors

	Integration tests
	Mixnet test

	GNUnet GNS tests

	Mixnet nodes registration in GNS
	GNUnet GNS limitations

	mixnet
	mixnet package

Indices and tables

	Index

	Module Index

	Search Page

pEp MixMailer prototype in Python

This project is a prototype of the pEp MixMailer project described in
[Design] .
It is composed by two subpackages:

	client

It encrypts an Email message several times as described in and send it to the
first remailer.

	remailer

It decrypts an OpenPGP encrypted Email and sends it to the recipient(s)
`in the decrypted Email.
It is intented to run as Postfix pipe.

Documentation

See the docs directory.

Issues

Please, report any bug or feature request at the `issue tracker`_.

Contributing

See CONTRIBUTING.md

License

GPLv3

Authors

juga at riseup dot net

[Design] https://mixmailer_docs.codeberg.page/Design/Proposal1.html.
.. _issue tracker: https://gitea.pep.foundation/pEp.foundation/mixmailer/issues

Integration tests

To run the integration test, you will need docker installed.

Mixnet test

Then run docker-compose up -d

The test represent the following scenario:

Alice (A) want to send a message to Bob (B) routing it via N1, N2, N3.

For this test, the following docker containers are needed:

Alice

	has a keyring with the following keys: As, Ap, Bp, N3p, N2p, N1

	compose a message from Alice to Bob

	launch the mixnet client, the client will:

	encrypt the message for Bob

	encrypt the message for N3

	encrypt the message for N2

	encrypt the message for N1

	the final message is from A to N1

	send the message to N1

N1

	has a kerying with the keys: N1s, N1p, N2p, N3p

	receives the message from A to N1

	the mixnet remailer is triggered, which:
1. decrypts the message and obtain a message from A to N2
2. change the from header to be from N1?
3. send the message to N2

N2

	has a kerying with the keys: N2s, N2p, N1p, N3p

	receives the message from A (or N1?) to N2

	the mixnet remailer is triggered, which:
1. decrypts the message and obtain a message from A to N3
2. change the from header to be from N2?
3. send the message to N3

N3

	has a kerying with the keys: N3s, N3p, N1p, N2p

	receives the message from A (or N2?) to N3

	the mixnet remailer is triggered, which:
1. decrypts the message and obtain a message from A to B
2. change the from header to be from N3?
3. send the message to B

Bob

	has a kerying with the keys: Bs, Bp, Ap, N1p, N2p, N3p

	receives the message from A (or N3?) to B

	launch pep client, which:
1. decrypts the message and obtain a message from A to B

GNUnet GNS tests

To run the tests that use the GNUnet cli, run docker/gnunet/test.sh.
To run the tests that use the GNUnet REST API, run
docker/gnunet/test_rest.sh.

Mixnet nodes registration in GNS

See some documentation about GNS [gnunet-gns]

V. proposed to use GNUnet GNS to register and retrieve mixnet nodes in the
mixnet network:

Nodes should register, with an email address and a key, what is
already in pEp identity. The key should be in ASCII armor Clients
obtain the nodes from GNS.

GNUnet GNS limitations

No TLS

in the Web REST interface [rest-gns]

Because it’s not possible to send/receive encrypted queries, every node
would need to run their own GNUnet node locally and send/receive queries
to it.

No authentication

in the Web REST interface [rest-gns]

Not a global system

With a global name system like DNS, all the client would have the same
view of the network. An authority would still be needed for other
reasons.

Because GNS is not global, authority(s) are needed.

Delegating GNS records

The authority(s) would neeed to add (to their gnunet-namestore) the keys
of the mixnet GNS nodes to be able to resolve their records, ie. the
authority(s) delegates the resolution of the node records to the nodes.

Likewise, each mixnet GNS nodes would need to add the key of the authority too,
to be able to solve other GNS nodes, ie. each mixnet GNS node delegates the
resolution of other node records to the authority.

See [delegation] for more details.

In the following diagram, there’s an authority and two nodes, showing which
records they’d store and which records they can query.
Note that 0000, 1111, 2222 would be the GNS nodes keys, while AAAA and
BBBB would be the mixnet nodes OpenPGP keys.

[image: ../_images/mixnet_gns_components.svg]

Node registration

The key(s) of the authority(s) would be hard-coded, so a mixnet GNS node can
easily add the authority(s) key(s) to its zone, to delegate to the authority the resolution of other nodes.

But the authority needs to get the (new) node key too. How this can be done?

	The node could add its own key querying the Web REST API of the authority,
but the request would not be encrypted

	nkls is investigating using GNUnet cadet of file sharing

Node discovery by the client

A mixnet client would need to know which are the mixnet nodes in the network.
It would need to also have a local GNS node to query records to the authority.

Since it is only possible to ask a record to the authority, but it is not
possible to ask all the records the authority knows about, the authority would
need to store in a record (called eg. mixnet) a list of all the mixnet (GNS)
nodes.
After retrieving that list, the client could ask the authority about a
node record.

A TXT record with the list of nodes could look like:

n1,n2

Which means we can then ask the authority about n1 and n2 records.

GNS records

And which would be the records that the nodes should register?

Each node should register their Email address and their OpenPGP key.
There is no need to register the OpenPGP fingerprint, since it can be obtained
from the key, and it does not add any extra security to transmit the
fingerprint in the same “channel” the key is transmited.
They probably should also register the mixnet “layer” in which they’ll operate.

CG proposed to use the CERT record type [cert], but it would only allow to
register the key, not the Email address and the layer.

We think TXT records are more suitable to store the triple.
It’d have the form:

email=root@n1.pep.example;layer=1;opengpg=AAAA

TXT records are limited to 255 characters, and a OpenPGP key can be way
longer than that. But it’s possible to add several records with the same name,
and they key can be splitted in several.
When querying the TXT record, the key can be reconstructed concatening all the
query results.

References:

	cert

	https://git.gnunet.org/gnunet.git/tree/src/gnsrecord/plugin_gnsrecord_dns.c#n130

	gnunet-gns

	https://gnunet.org/en/use.html#gns_cli

	rest-gns(1,2)

	https://rest.gnunet.org/

	delegation

	https://docs.gnunet.org/handbook/gnunet.html#Adding-Links-to-Other-Zones

mixnet

	mixnet package
	Subpackages
	mixnet.client package
	Submodules

	mixnet.client.cli module

	mixnet.client.client module

	mixnet.client.constants module

	Module contents

	mixnet.remailer package
	Submodules

	mixnet.remailer.cli module

	mixnet.remailer.remailer module

	Module contents

	Submodules

	mixnet.common module

	mixnet.defaults module

	mixnet.exceptions module

	mixnet.settings module

	Module contents

mixnet package

Subpackages

	mixnet.client package
	Submodules

	mixnet.client.cli module

	mixnet.client.client module

	mixnet.client.constants module

	Module contents

	mixnet.remailer package
	Submodules

	mixnet.remailer.cli module

	mixnet.remailer.remailer module

	Module contents

Submodules

mixnet.common module

mixnet.defaults module

mixnet.exceptions module

mixnet.settings module

Module contents

mixnet.client package

Submodules

mixnet.client.cli module

mixnet.client.client module

mixnet.client.constants module

Module contents

mixnet.remailer package

Submodules

mixnet.remailer.cli module

mixnet.remailer.remailer module

Module contents

Index

 _static/comment-close.png

_static/comment.png

_static/comment-bright.png

_static/file.png

_static/down-pressed.png

_static/down.png

_static/minus.png

_static/ajax-loader.gif

_static/plus.png

nav.xhtml

 Table of Contents

 		
 Welcome to pEp Python Remailer’s documentation!

 		
 pEp MixMailer prototype in Python

 		
 Documentation

 		
 Issues

 		
 Contributing

 		
 License

 		
 Authors

 		
 Integration tests

 		
 Mixnet test

 		
 Alice

 		
 N1

 		
 N2

 		
 N3

 		
 Bob

 		
 GNUnet GNS tests

 		
 Mixnet nodes registration in GNS

 		
 GNUnet GNS limitations

 		
 No TLS

 		
 No authentication

 		
 Not a global system

 		
 Delegating GNS records

 		
 Node registration

 		
 Node discovery by the client

 		
 GNS records

 		
 mixnet

 		
 mixnet package

 		
 Subpackages

 		
 Submodules

 		
 mixnet.common module

 		
 mixnet.defaults module

 		
 mixnet.exceptions module

 		
 mixnet.settings module

 		
 Module contents

_static/up.png

_static/up-pressed.png

